دوره ها

Oracle Database 11g: Data Mining Techniques

• کد دوره : OR326
• مدت دوره : 16 ساعت
• شهریه : 8.600.000 ریال
پیش ثبت نام

ردیف شهریه روزهای برگزاری ساعت برگزاری تاریخ شروع کلاس ظرفیت لینک ثبت نام
1 8.600.000 ریال یکشنبه-سه شنبه (17تا21) 9 خرداد 1396 10 ثبت نام
2 8.600.000 ریال یکشنبه-سه شنبه (17تا21) 25 تير 1396 12 ثبت نام
3 8.600.000 ریال دوشنبه-چهارشنبه (17تا21) 18 مرداد 1396 12 ثبت نام

 

What you will learn:

In this course, students review the basic concepts of data mining and learn how leverage the predictive analytical power of the Oracle Database Data Mining option by using Oracle Data Miner 11g Release 2. The Oracle Data Miner GUI is an extension to Oracle SQL Developer 3.0 that enables data analysts to work directly with data inside the database. The Data Miner GUI provides intuitive tools that help you to explore the data graphically, build and evaluate multiple data mining models, apply Oracle Data Mining models to new data, and deploy Oracle Data Mining's predictions and insights throughout the enterprise. Oracle Data Miner's SQL APIs automatically mine Oracle data and deploy results in real-time. Because the data, models, and results remain in the Oracle Database, data movement is eliminated, security is maximized and information latency is minimized.

 

Audience:

  • Application Developers
  • Business Analysts
  • Data Warehouse Analyst
  • Database Administrators

Related Training

Required Prerequisites:

  • A working knowledge of: The SQL language and Oracle Database design and administration

Course Objectives:

  • Explain basic data mining concepts and describe the benefits of predictive analysis
  • Understand primary data mining tasks, and describe the key steps of a data mining process
  • Use the Oracle Data Miner to build,evaluate, and apply multiple data mining models
  • Use Oracle Data Mining's predictions and insights to address many kinds of business problems, including: Predict
  • individual behavior, Predict values, Find co-occurring events
  • Learn how to deploy data mining results for real-time access by end-users

Course Topics:

Introduction

  • Course Objectives
  • Suggested Course Pre-requisites
  • Suggested Course Schedule
  • Class Sample Schemas
  • Practice and Solutions Structure
  • Review location of additional resources (including ODM and SQL Developer documentation and online resources)

Overviewing Data Mining Concepts

  • What is Data Mining?
  • Why use Data Mining?
  • Examples of Data Mining Applications
  • Supervised Versus Unsupervised Learning
  • Supported Data Mining Algorithms and Uses

Understanding the Data Mining Process

  • Common Tasks in the Data Mining Process

Introducing Oracle Data Miner 11g Release 2

  • Data mining with Oracle Database
  • Introducing the SQL Developer interface
  • Setting up Oracle Data Miner
  • Accessing the Data Miner GUI
  • Identifying Data Miner interface components
  • Examining Data Miner Nodes
  • Previewing Data Miner Workflows

Using Classification Models

  • Reviewing Classification Models
  • Adding a Data Source to the Workflow
  • Using the Data Source Wizard
  • Creating Classification Models
  • Building the Models
  • Examining Class Build Tabs
  • Comparing the Models
  • Selecting and Examining a Model

Using Regression Models

  • Reviewing Regression Models
  • Adding a Data Source to the Workflow
  • Using the Data Source Wizard
  • Performing Data Transformations
  • Creating Regression Models
  • Building the Models
  • Comparing the Models
  • Selecting a Model

Performing Market Basket Analysis

  • What is Market Basket Analysis?
  • Reviewing Association Rules
  • Creating a New Workflow
  • Adding a Data Source to th Workflow
  • Creating an Association Rules Model
  • Defining Association Rules
  • Building the Model
  • Examining Test Results

Using Clustering Models

  • Describing Algorithms used for Clustering Models
  • Adding Data Sources to the Workflow
  • Exploring Data for Patterns
  • Defining and Building Clustering Models
  • Comparing Model Results
  • Selecting and Applying a Model
  • Defining Output Format
  • Using Oracle Net Manager

Performing Anomaly Detection

  • Reviewing the Model and Algorithm used for Anomaly Detection
  • Adding Data Sources to the Workflow
  • Creating the Model
  • Building the Model
  • Examining Test Results
  • Applying the Model
  • Evaluating Results

Deploying Data Mining Results

  • Requirements for deployment
  • Deployment Tasks
  • Examining Deployment Options

 

 


۶ قدم تا موفقیت

مشتریان

شرکت ملی پالایش و پخش فرآورده های نفتی ایران شرکت مخابرات ایران بانک تجارت سازمان راهداری و حمل و نقل جاده ای شرکت پتروشیمی شازند بانک مسکن سایپا بانک پارسیان نیروی انتظامی جمهوری اسلامی ایران موسسه مالی و اعتباری کارسازان آینده ایساکو مگفا تعاونی اعتبار ثامن الائمه همراه اول شرکت داده ورزی سداد